Abstract

Multiple Instance Learning (MIL) is a popular learning technique in various vision tasks including image classification. However, most existing MIL methods do not consider the problem of insufficient examples in the given target category. In this case, it is difficult for traditional MIL methods to build an accurate classifier due to the lack of training examples. Motivated by the empirical success of transfer learning, this paper proposes a novel approach of Adaptive Knowledge Transfer for Multiple Instance Learning (AKT-MIL) in image classification. The new method transfers cross-category knowledge from source categories under multiple instance setting for boosting the learning process. A unified learning framework with a data-dependent mixture model is designed to adaptively combine the transferred knowledge from sources with a weak classifier built in the target domain. Based on this framework, an iterative coordinate descent method with Constraint Concave-Convex Programming (CCCP) is proposed as the optimization procedure. An extensive set of experimental results demonstrate that the proposed AKT-MIL approach substantially outperforms several state-of-the-art algorithms on two benchmark datasets, especially in the scenario when very few training examples are available in the target domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.