Abstract

Deep learning (DL) based diagnosis models have to be trained by large quantities of monitoring data of machines. However, in real-case scenarios, machines operate under the normal condition in most of their life time while faults seldom happen. Therefore, though massive data are accessible, most are data of the normal condition while fault data are still extremely limited. In other words, fault diagnosis of real machines is actually a few-shot diagnosis problem. To deal with few-shot diagnosis, this article proposes adaptive knowledge transfer with multiclassifier ensemble (AKTME) under the paradigm of continual machine learning. In AKTME, knowledge learned by DL models is considered to be represented by the learnable filter kernels (FKs). The key of AKTME is a proposed continual weighted updating (CWU) technique of FKs. By CWU, shared FKs are distilled from multiple auxiliary tasks and adaptively transferred to the target task. Then by multiclassifier ensemble, AKTME is able to recognize faults with few fault data accessible. AKTME is applied on two few-shot diagnosis cases. Results verify that AKTME achieves higher diagnosis accuracies than recently proposed methods. Moreover, AKTME tends to improve the diagnosis accuracy as it prelearns on more auxiliary tasks continually.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.