Abstract
Single trial electroencephalogram classification is indispensable in online brain–computer interfaces (BCIs) A classification method called adaptive Kernel Fisher Support Vector Machine (KF-SVM) is designed and applied to single trial EEG classification in BCIs. The adaptive KF-SVM algorithm combines adaptive idea, SVM and within-class scatter inspired from kernel fisher. Firstly, the within-class scatter matrix of a feature vector is calculated. And to construct a new kernel, this scatter is incorporated into the kernel function of SVM. Ultimately, the recognition result is calculated by the SVM whose kernel has been changed. The proposed algorithm simultaneously maximizes the discrimination between classes and also considers the within-class dissimilarities, which avoids some disadvantages of traditional SVM. In addition, the within-class scatter matrix of adaptive KF-SVM is updated trial by trail, which enhances the online adaptation of BCIs. Based on the EEG data recorded from seven subjects, the new approach achieved higher classification accuracies than the standard SVM, KF-SVM and adaptive linear classifier. The proposed scheme achieves the average performance improvement of 5.8%,5.2% and 3.7% respectively compared to other three schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.