Abstract

At present, the total length of accident blackspot accounts for 0.25% of the total length of the road network, while the total number of accidents that occurred at accident black spots accounts for 25% of the total number of accidents on the road network. This paper describes a traffic accident black spot recognition model based on the adaptive kernel density estimation method combined with the road risk index. Using the traffic accident data of national and provincial trunk lines in Shanghai and ArcGIS software, the recognition results of black spots were compared with the recognition results of the accident frequency method and the kernel density estimation method, and the clustering degree of recognition results of adaptive kernel density estimation method were analyzed. The results show that: the accident prediction accuracy index values of the accident frequency method, kernel density estimation method, and traffic accident black spot recognition model were 14.39, 16.36, and 18.25, respectively, and the lengths of the traffic accident black spot sections were 184.68, 162.45, and 145.57, respectively, which means that the accident black spot section determined by the accident black spot recognition model was the shortest and the number of traffic accidents identified was the largest. Considering the safety improvement budget of 20% of the road length, the adaptive kernel density estimation method could identify about 69% of the traffic accidents, which was 1.13 times and 1.27 times that of the kernel density estimation method and the accident frequency method, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.