Abstract

AbstractThe combination of antenna array beamforming with multiuser detection can effectively improve the detection efficiency of a wireless system under multipath interference, especially in a fast‐fading channel. This paper studies the performance of an adaptive beamformer incorporated with a block‐wise minimum mean square error(B‐MMSE) detector, which works on a unique signal frame characterized by training sequence preamble and data blocks segmented by zero‐bits. Both beam‐former weights updating and B‐MMSE detection are carried out by either least mean square (LMS) or recursive least square (RLS) algorithm. The comparison of the two adaptive algorithms applied to both beamformer and B‐MMSE detector will be made in terms of convergence behaviour and estimation mean square error. Various multipath patterns are considered to test the receiver's responding rapidity to changing multipath interference. The performance of the adaptive B‐MMSE detector is also compared with that of non‐adaptive version (i.e. through direct matrix inversion). The final performance in error probability simulation reveals that the RLS/B‐MMSE scheme outperforms non‐adaptive B‐MMSE by 1–5 dB, depending on the multipath channel delay profiles of concern. The obtained results also suggest that adaptive beamformer should use RLS algorithm for its fast and robust convergence property; while the B‐MMSE filter can choose either LMS or RLS algorithm depending on antenna array size, multipath severity and implementation complexity. Copyright © 2004 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.