Abstract
This paper presents a new approach to scheduling jobs on a service Grid using a genetic algorithm (GA). A fitness function is defined to minimize the average execution time of scheduling N jobs to M(≤ N) machines on the Grid. Two models are proposed to predict the execution time of a single job or multiple jobs on each machine with varied system load. The single service type model is used to schedule jobs of one single service to a machine while the multiple service types model schedules jobs of multiple services to a machine. The predicted execution times from these models are used as input to the genetic algorithm to schedule N jobs to M machines on the Grid. Experiments on a small Grid of four machines have shown a significant reduction of the average execution time by the new job scheduling approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.