Abstract

In this study, a data-driven adaptive iterative learning Kalman consensus filtering (DD-AILKCF) method is designed for high-speed trains to address the parameter identification and speed consistent optimal estimation problem. The nonlinear train dynamics model is transformed into a linear-like state-space model by using the Full Form Dynamic Linearization (FFDL) technique. Meanwhile, four types of sensors are used to obtain different kinds of datasets to implement the multi-sensor system. The method proposed in this paper consists of two steps. First, an adaptive iterative learning Kalman filtering (AILKF) algorithm is proposed to estimate the fast-time varying train parameter in the iteration domain. Then, based on the identified parameter, a distributed multi-source heterogeneous network consensus filtering (MHN-CF) algorithm is proposed for the speed estimation of high-speed trains. The convergence of the proposed algorithm is derived based on the Lyapunov Function. The proposed method is compared with existing methods by numerical simulations, and the results indicate that the proposed method achieves good effectiveness in improving the accuracy of high-speed train speed estimation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.