Abstract

This paper proposes a new adaptive iterative learning control approach for a class of nonlinearly parameterized systems with unknown time-varying delay and unknown control direction. By employing the parameter separation technique and signal replacement mechanism, the approach can overcome unknown time-varying parameters and unknown time-varying delay of the nonlinear systems. By incorporating a Nussbaum-type function, the proposed approach can deal with the unknown control direction of the nonlinear systems. Based on a Lyapunov-Krasovskii-like composite energy function, the convergence of tracking error sequence is achieved in the iteration domain. Finally, two simulation examples are provided to illustrate the feasibility of the proposed control method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.