Abstract

In this work, an adaptive iterative learning control (AILC) scheme is proposed to address a class of nonlinearly parameterised systems with both unknown time-varying delays and input saturations. By incorporating a saturation function, a novel iterative learning control mechanism is constructed with a feedback term in the time domain and a fully saturated adaptive learning term in the iteration domain, which is used to estimate the unknown time-varying system uncertainty. A new time-weighted Lyapunov–Krasovskii-like composite energy function (LKL-CEF) is designed for the convergence analysis where time-weighted inputs, states and estimates of system uncertainty are all considered. Despite the existence of time-varying parametric uncertainties, time-varying delays, input saturations and local Lipschitz nonlinearities, the learning convergence is guaranteed with rigorous mathematical analysis. Simulation results verify the correctness and effectiveness of the proposed method further.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call