Abstract

We present an adaptive scheme for isogeometric phase-field modeling, to perform suitably graded hierarchical refinement and coarsening on both single- and multi-patch geometries by considering truncated hierarchical spline constructions which ensure C1 continuity between patches. We apply the proposed algorithms to the Cahn–Hilliard equation, describing the time-evolving phase separation processes of immiscible fluids. We first verify the accuracy of the hierarchical spline scheme by comparing two classical indicators usually considered in phase-field modeling, for then demonstrating the effectiveness of the grading strategy in terms of accuracy per degree of freedom. A selection of numerical examples confirms the performance of the proposed scheme to simulate standard modes of phase separation using adaptive isogeometric analysis with smooth hierarchical spline constructions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call