Abstract

In this paper, our objective is primarily to use adaptive inverse-quadratic (IQ) and inverse-multi-quadratic (IMQ) radial basis function (RBF) interpolation techniques to develop third and fourth-order methods such as Adams–Bashforth (AB) and Adams–Moulton (AM) methods. By utilizing a free parameter involved in the RBF, the local convergence of the numerical solution is enhanced by making the local truncation error vanish. Consistency and stability analysis is presented along with some numerical results to back up our assertions. The accuracy and rate of convergence of each proposed technique are equal to or better than the original AB and AM methods by eliminating the local truncation error thus in that sense, the proposed adaptive methods are optimal. We conclude that both IQ and IMQ-RBF methods yield an improved order of convergence than classical methods, while the superiority of one method depends on the method and the problem considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call