Abstract

Remote passive sonar detection and classification are challenging problems that require the user to extract signatures under low signal-to-noise (SNR) ratio conditions. Adaptive line enhancers (ALEs) have been widely utilized in passive sonars for enhancing narrowband discrete components, but the performance is limited. In this paper, we propose an adaptive intrawell matched stochastic resonance (AIMSR) method, aiming to break through the limitation of the conventional ALE by nonlinear filtering effects. To make it practically applicable, we addressed two problems: (1) the parameterized implementation of stochastic resonance (SR) under the low sampling rate condition and (2) the feasibility of realization in an embedded system with low computational complexity. For the first problem, the framework of intrawell matched stochastic resonance with potential constraint is implemented with three distinct merits: (a) it can ease the insufficient time-scale matching constraint so as to weaken the uncertain affect on potential parameter tuning; (b) the inaccurate noise intensity estimation can be eased; (c) it can release the limitation on system response which allows a higher input frequency in breaking through the large sampling rate limitation. For the second problem, we assumed a particular case to ease the potential parameter . As a result, the computation complexity is greatly reduced, and the extremely large parameter limitation is relaxed simultaneously. Simulation analyses are conducted with a discrete line signature and harmonic related line signature that reflect the superior filtering performance with limited sampling rate conditions; without loss of generality of detection, we considered two circumstances corresponding to (periodic signal with noise) and (pure noise) hypotheses, respectively, which indicates the detection performance fairly well. Application verification was experimentally conducted in a reservoir with an autonomous underwater vehicle (AUV) to validate the feasibility and efficiency of the proposed method. The results indicate that the proposed method surpasses the conventional ALE method in lower frequency contexts, where there is about 10 dB improvement for the fundamental frequency in the sense of power spectrum density (PSD).

Highlights

  • Passive sonars have been proven to have practical efficiency in detecting and recognising selfemitting underwater targets such as ships, submarines, and autonomous underwater vehicle (AUVs), etc. [1,2,3]

  • We proposed an adaptive intrawell matched stochastic resonance (AIMSR) method to break through the limitation of the conventional Adaptive line enhancers (ALEs) by a nonlinear filtering effect

  • The problem of parameterized implementation of SR under a low sampling rate condition is firstly addressed by implementing a framework of intrawell matched stochastic resonance with potential constraint

Read more

Summary

Introduction

Passive sonars have been proven to have practical efficiency in detecting and recognising selfemitting underwater targets such as ships, submarines, and autonomous underwater vehicle (AUVs), etc. [1,2,3]. SR part, and the classical SR generally requires a large sampling frequency that is more than 50 times the driving frequency All these processing approaches are essential to deal with the periodic signal individually, and flexible limited and lack of computation efficiency. In our previous work [37], the nonlinear filtering effects of intrawell matched stochastic resonance is analyzed, which have shown a superior filtering performance as well as a wider range of frequency response. This can give us a guidance to ease the large sampling frequency limitation.

Signal Model and Measurement
Generalized Matched Stochastic Resonance with Duffing Oscillator
Framework of Intrawell Matched Stochastic Resonance with Potential Constraint
Adaptive Strategy for Optimized Implementation
Implementation of Adaptive Intrawell Matched Stochastic Resonance
Discrete Line Signature Signal Analysis
Harmonic Related Line Signature Signal Analysis
Verfication on AUV’s Low Frequency Propeller Harmonic Tonals
Discussion
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call