Abstract

This article proposes adaptive internal model controls for the collocated output regulation of a flexible wing, where distributed disturbances, boundary disturbances, and references are from an exactly unknown exosystem. Observer-based tracking error feedback controls are first designed to address the robust output regulation in case of a known exosystem matrix. If the exosystem has an unknown matrix, an adaptive observer is further proposed with the observer error system converging to zero exponentially. Then, we can obtain adaptive observer-based controls by combining adaptive observers and observer-based controls, which are able to regulate the tracking errors toward zero in case of the exactly unknown disturbances and references. The corresponding closed-loop system is proved to be internally asymptotically stable. A simulation example is further provided for adaptive internal model control of the wing system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call