Abstract

It has been proposed that CDMA systems can be assigned to spectral bands which are presently occupied by narrowband users to further increase spectral capacity. Such CDMA overlay systems could provide new options for efficient utilization of the spectrum with minimal disruption to existing narrowband users, especially if adaptive interference suppression techniques are utilized in the spread spectrum receiver. Previous studies have defined the SNR improvement ratio which can be achieved for tone interferers and for narrowband interferers for which the center frequency of the interference is at the carrier frequency of the CDMA signal. In this paper the bit-error-rate (BER) performance of the mobile-to-base link of a CDMA system for a single narrowband user which occupies a significant portion of the CDMA bandwidth is evaluated. It is shown that the narrowband model used in previous studies does not apply in this case, especially for the large, effective, bandwidths which are characteristic of the interferers in the overlay system. The dependence of the BER on the filter order, the bandwidth of the interference, and its center frequency relative to the CDMA carrier frequency are defined. Additionally the increase in BER for a digital implementation of the adaptive suppression filter relative to the optimal Wiener filter is characterized with respect to the adaptive time constant and the quantization errors due to finite wordlength. It is shown that these implementation errors can be made negligible compared to the errors which are characteristic of the optimal Wiener filter. Analytic results are validated by simulation for typical system parameters.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.