Abstract
ABSTRACTThis paper considers the integrated guidance and control (IGC) problem for impact angle constrained interception against manoeuvring targets with actuator saturation constraint. Based on the backstepping technique, an adaptive IGC law is presented to address this problem, where a fixed-time differentiator is proposed to estimate the derivatives of virtual control inputs to avoid the inherent problem of “explosion of complexity” suffered by the typical backstepping. Furthermore, an auxiliary first-order filter is introduced into the IGC law to cope with the actuator saturation constraint. The stability of the closed-loop system is strictly proved. Finally, the superiority of the proposed IGC law is verified by comparison simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.