Abstract

This paper presents an automatic landing control design using adaptive, integrated guidance and control (IGC) logic. The proposed IGC design uses a combination of an adaptive output feedback inversion and backstepping techniques. The problem is formulated as an adaptive output feedback control problem for a line-of-sight-based chasing flight configuration. The design objective is to regulate the relative distance between the aircraft and the moving reference point on a landing pattern and two bearing angles maintaining turn coordination. Adaptive neural networks are trained online with available measurements to compensate for inversion error as a result of unmodeled dynamics and modeling errors of the aircraft in the design process. In addition, a reference command trajectory for the automatic landing control is designed in a way that the aircraft follows the landing pattern regardless of its initial position. The automatic landing system using IGC logic is evaluated using a sophisticated six-degrees-of-freedom nonlinear simulation program with the approach and landing scenario.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.