Abstract

AbstractThis work investigates and solves the design of adaptive impulsive observers for a class of uncertain switched nonlinear systems with unknown parameter. Sufficient conditions are derived for designing such observers for each subsystem to reconstruct asymptotically and update system states in real time. The state observer is represented in terms of impulsive differential equations. The parameter estimation law is modelled by an impulse‐free, time‐varying differential equation associated with the impulse time sequence in order to determine when the observer estimated state is updated. The asymptotic convergence to zero of the observation errors is established by applying the method of multiple time‐varying Lyapunov functions. Sufficient conditions are derived that guarantee the convergence of parameter estimation. An example of switched Lorenz system along with numeric and simulation results is presented to demonstrate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.