Abstract

Uncertainty in the master–slave model is one of the primary factors affecting the transparency of teleoperation systems, and congestion in the master–slave communication network also greatly influences the performance of the teleoperation system. This paper proposes a combined framework of adaptive and impedance control to address the uncertainty in the master–slave model and achieve smooth operation at the slave end. Building upon this linear model, an event-triggered mechanism is designed using Lyapunov functions, with dynamic online adjustment of the triggering threshold parameters. Following the completion of the aforementioned research, control objectives are established to validate the performance of the teleoperation control system proposed in this paper. Finally, simulation verification is conducted in the Matlab/Simulink environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.