Abstract

AbstractUsually, detailed impact simulation models within flexible multibody systems have to be set up manually rather than being generated automatically. This is because the process requires prior knowledge of the time and location of the impact, as well as the element resolution within the contact area. If the penalty method is used to determine the occurring contact forces, the corresponding penalty factor also needs to be determined manually. This work, however, presents an adaptive algorithm to simulate impacts within flexible multibody systems fully automatically using reduced isogeometric analysis models, the floating frame of reference formulation, and quasistatic contact models for an efficient but still accurate simulation. The adaptive algorithm detects impacts in the system, determines the contact locations on the bodies, refines the contact area, and determines the penalty factor, and therefore automatically simulates impacts. The work shows how to automatically simulate impacts in flexible multibody systems without user action or prior knowledge of impact location and size. The first application example simulates significant elastodynamic effects within a long flexible rod. The goal is to validate the algorithm by preserving the wave propagation and energy of the system. The second application example simulates the impacts of two flexible double pendulums. This setup is a suitable benchmark for the complete adaptive impact analysis procedure as the flexible double pendulums undergo large rigid body motions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.