Abstract
Undersegmentation or oversegmentation is a challenge faced in image segmentation methods, and it is extreme important to determine the optimal number of regions (clusters) of an image in real-world applications. In this study, we introduce an adaptive strategy to do so. The basic idea is to firstly oversegment an image by using the Mean-shift (MS) method, and then segment the obtained oversegmented results by using an evolutionary algorithm. In the second stage, a feature is extracted for each region obtained by the MS method, and a new fitness function is designed to determine the optimal number of clusters. The adaptive approach is applied to a variety of images, and the experimental results show that our method is both efficient and effective for image segmentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.