Abstract

Image noise filtering has been widely perceived as an estimation problem in the spatial domain. We deal with it as an estimation problem in an uncorrelated transform domain. This idea leads to a generalization of the adaptive linear minimum mean square error (LMMSE) estimator for filtering noisy images. In our proposed method, the transform-domain local statistics obtained from the noisy image are exploited. Due to the fact that the transform-domain local statistics carry more information about the image than the spatial-domain local statistics do, improvement in noise filtering is gained overall and is particularly significant in the vicinity of edges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.