Abstract

Adaptive IIR (infinite impulse response) filters are particularly beneficial in modeling real systems because they require lower computational complexity and can model sharp resonances more efficiently as compared to the FIR (finite impulse response) counterparts. Unfortunately, a number of drawbacks are associated with adaptive IIR filtering algorithms that have prevented their widespread use, such as: convergence to biased or local minimum solutions; requirement of stability monitoring; and slow convergence. Most of the recent research effort on this field is aimed at overcoming some of the above mentioned drawbacks. In this paper, a number of known adaptive IIR filtering algorithms are presented using a unifying framework that is useful to interrelate the algorithms and to derive their properties. Special attention is given to issues such as the motivation to derive each algorithm and the properties of the solution after convergence. Several computer simulations are included in order to verify the predicted performance of the algorithms. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.