Abstract

To satisfy requirements on future mobile network, a large number of small cells should be deployed. In such scenario, mobility management becomes a critical issue in order to ensure seamless connectivity with a reasonable overhead. In this paper, we propose a fuzzy logic-based scheme exploiting a user velocity and a radio channel quality to adapt a hysteresis margin for handover decision in a self-optimizing manner. The objective of the proposed algorithm is to reduce a number of redundant handovers and a handover failure ratio while allowing the users to exploit benefits of the dense small cell deployment. Simulation results show that our proposed algorithm efficiently suppresses ping pong effect and keeps it at a negligible level (below 1%) in all investigated scenarios. Moreover, the handover failure ratio and the total number of handovers are notably reduced with respect to existing algorithms, especially in scenario with high number of small cells. In addition, the proposed scheme keeps the time spent by the users connected to the small cells at a similar level as the competitive algorithms. Thus, the benefits of the dense small cell deployment for the users are preserved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call