Abstract
We propose a high-order adaptive numerical solver for the semilinear elliptic boundary value problem modeling magnetic plasma equilibrium in axisymmetric confinement devices. In the fixed boundary case, the equation is posed on curved domains with piecewise smooth curved boundaries that may present corners. The solution method we present is based on the hybridizable discontinuous Galerkin method and sidesteps the need for geometry-conforming triangulations thanks to a transfer technique that allows to approximate the solution using only a polygonal subset as computational domain. Moreover, the solver features automatic mesh refinement driven by a residual-based a posteriori error estimator. As the mesh is locally refined, the computational domain is automatically updated in order to always maintain the distance between the actual boundary and the computational boundary of the order of the local mesh diameter. Numerical evidence is presented of the suitability of the estimator as an approximate error measure for physically relevant equilibria with pressure pedestals, internal transport barriers, and current holes on realistic geometries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.