Abstract
Image denoising is an important step in eliminating any noise impact in any image transmission process. Recently we presented two approaches for Bivariate based image denoising. They were Double Density Discrete Wavelet Transform (DD DWT) and Double Density Dual Tree Complex Wavelet Transform (DD CWT). In both techniques we decomposed noisy images with either DD DWT or DD CWT decompositions and then applied the Bivariate based denoising technique for noise removal. In this paper we propose an adaptive hybrid technique for Bivariate based image denoising that is based on the synthesis of DD-DWT bands or DD-CWT bands but with different weights, to deliver enhanced image features with less denoising impact especially around image edges, which is the most effected by noisy transmission channels. This proposed technique has been also enhanced by edge sharpening and Eigen analysis, as two separate stages. Simulation result comparisons have been performed between the proposed hybrid band adaptive DD-DWT and DD-CWT technique and the two primary techniques DD-DWT, DD- CWT, as well as other superior literature techniques such the original bivariate denoising technique with both original Complex Wavelet Transform and Double Density decompositions. This work in specific compares between Double Density DWT and Double Density CWT decompositions, proposes new filter design that suits each of them and proposes a hybrid technique between as will be shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.