Abstract

Big data can easily be contaminated by outliers or contain variables with heavy-tailed distributions, which makes many conventional methods inadequate. To address this challenge, we propose the adaptive Huber regression for robust estimation and inference. The key observation is that the robustification parameter should adapt to the sample size, dimension and moments for optimal tradeoff between bias and robustness. Our theoretical framework deals with heavy-tailed distributions with bounded th moment for any . We establish a sharp phase transition for robust estimation of regression parameters in both low and high dimensions: when , the estimator admits a sub-Gaussian-type deviation bound without sub-Gaussian assumptions on the data, while only a slower rate is available in the regime and the transition is smooth and optimal. In addition, we extend the methodology to allow both heavy-tailed predictors and observation noise. Simulation studies lend further support to the theory. In a genetic study of cancer cell lines that exhibit heavy-tailedness, the proposed methods are shown to be more robust and predictive. Supplementary materials for this article are available online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.