Abstract

Directionally dependent anisotropic material appearance phenomenon is widely represented using bidirectional reflectance distribution function (BRDF). This function needs in practice either reconstruction of unknown values interpolating between sparse measured samples or requires data fidelity preserving compression forming a compact representation from dense measurements. Both properties can be, to a certain extent, preserved by means of analytical BRDF models. Unfortunately, the number of anisotropic BRDF models is limited, and moreover, most require either a demanding iterative optimization procedure dependent on proper initialization or the user setting parameters. Most of these approaches are challenged by the fitting of complex anisotropic BRDFs. In contrast, we approximate BRDF anisotropic behavior by means of highlight stencils and derive a novel BRDF model that independently adapts such stencils to each anisotropic mode present in the BRDF. Our model allows for the fast direct fitting of parameters without the need of any demanding optimization. Furthermore, it achieves an encouraging, expressive visual quality as compared to rival solutions that rely on a similar number of parameters. We thereby ascertain that our method represents a promising approach to the analysis and modeling of complex anisotropic BRDF behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.