Abstract

Digitally controlled switching converter suffers from bandwidth limitation because of the additional phase delay in the digital feedback control loop. To overcome the bandwidth limitation without using a high sampling rate, this study presents an adaptive third-order digital controller for regulating a voltage-mode buck converter with a modest 2× oversampling ratio. The phase lag because of the analogue-to-digital converter (ADC) conversion time delay is virtually compensated by providing an early estimation of the error voltage for the next sampling time instant, enabling a higher unity-gain bandwidth without compromising stability. An additional pair of low-frequency pole and zero in the third-order controller increases the low-frequency gain, resulting in faster settling time and smaller output voltage deviation during line transient. Both simulation and experimental results demonstrate that the proposed adaptive third-order controller reduces the settling time by 50% in response to a 1 V line transient and 30% in response to a 600 mA load transient, compared to the baseline static second-order controller. The fastest settling time is measured to be about 11.70 μs, surpassing the transient performance of conventional digital controllers and approaching that of the state-of-the-art analogue-based controllers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call