Abstract

The fractional population diffusion model is crucial for pest prevention. This paper presents an adaptive hierarchical collocation method for solving this model, enhancing the efficiency of algorithms based on Low-Complexity Shannon-Cosine wavelet derived from combinatorial identity theory. This function, an improvement over previous constructs, mitigates the need for iterative computation of parameters and boasts advantages like interpolation, symmetry, and compact support. The method’s extension to other time-fractional partial differential equations (PDEs) is also possible. The algorithm’s complexity analysis illustrates the concise function’s efficiency advantage over the original expression when solving time-fractional PDEs. Comparatively, the method exhibits superior numerical performance to alternative wavelet spectral methods like the Shannon–Gabor wavelet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.