Abstract

Present study aims to develop Hilbert–Huang transformation based signal processing scheme to identify the modal parameters of a reinforced concrete framed building subjected to multi-component earthquake excitations. An adaptive band-pass filtering strategy is developed to identify modal parameters (i.e. natural frequencies, damping and mode shapes). The proposed method is unique as it identifies the system parameters from the limited measurements due to arbitrary non-stationary excitations. The advantage of this technique is its ability to extract a complete set of modal frequencies from each measurement. The mode shapes are identified by updating the finite element model using the estimated modal parameters. In this context, the proposed method is effective as the large number of modal parameters identified from each measurement help to optimize the finite element model. The accuracy of the proposed method is demonstrated using both synthetic and actual measurements during an earthquake. Copyright © 2015 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.