Abstract

Convolutional neural networks (CNNs), a kind of feedforward neural network with a deep structure, are one of the representative methods in hyperspectral image (HSI) classification. However, redundant information and interclass interference are common and challenging problems in HSI classification. In addition, if the spectral and spatial information is not properly extracted and analyzed, it will affect the classification performance of the network to a great extent. Aiming at these issues, this article proposes an HSI classification method based on an adaptive hash attention mechanism and a lower triangular network (AHA-LT). First, the attention mechanism is introduced in the preprocessing stage, which is composed of the spectral attention module and the adaptive hash spatial attention module in series. Then, the data processed by the attention mechanism are introduced into the lower triangular network (LTNet) to obtain the fused high-dimensional semantic features. Finally, we compress the features and obtain the output classification results through several fully connected layers. Among them, LTNet is composed of 2-D–3-D CNN and multiscale features. The network integrates the characteristics of multibranch, feature fusion, feature compression, and skip connections. Extensive experiments on four widely used HSI data sets show that the proposed method can obtain a great improvement in performance compared with the existing methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.