Abstract

We derive a class of equations describing low Reynolds number steady flows of incompressible and viscous fluids in networks made of straight channels, with several sources and sinks and adaptive conductivities. A graph represents the network, and the fluxes at sources and sinks control the flow. The adaptive conductivities describe the transverse channel elasticities, mirroring several network structures found in physics and biology. Minimising the dissipated energy per unit of time, we have found an explicit form for the adaptation equations and, asymptotically in time, a steady state tree geometry for the graph connecting sources and sinks is reached. A phase transition tuned by an order parameter for the adapted steady state graph has been found.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call