Abstract

Using an islanded microgrid (MG) with large-scale integration of renewable energy is the most popular way of solving the reliable power supply problem for remote areas and critical electrical users. However, compared with traditional power systems, the limited spinning reserves and network communication bandwidth may cause weak frequency stability in the presence of stochastic renewable active outputs and load demand fluctuations. In this paper, an adaptive event-triggered control (ETC) strategy for a load frequency control (LFC) system in an islanded MG is proposed. First, a bounded adaptive event-triggered communication scheme is designed. This not only saves on network resources, but also ensures that the control center has a sensitive monitoring ability for the MG operating status when the frequency deviations have been effectively damped. Secondly, by fully considering the spinning reserve constraints and uncertain communication delays, the LFC system is described as a nonlinear model with saturation terms. Design criteria for ETC parameters are strictly deduced based on Lyapunov stability theory. Finally, an ETC parameter optimization algorithm based on random direction search is developed to reconcile the bandwidth occupancy and control performance. The effectiveness of the proposed method is verified in an MG test system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call