Abstract

Data stream clustering has wide applications, such as online financial transactions, telephone records, and network monitoring. Grid-based clustering partitions stream data into cells, derives statistical information of the cells, and then applies clustering on these much smaller statistical information without referring to the input data. Therefore, grid-based clustering is efficient and very suitable for high-throughput data streams, which are continuous, time-varying, and possibly unpredictable. Various grid-based clustering schemes have been proposed. However, to the best of our knowledge, none of them provides an accuracy guarantee for their clustering output. To fill this gap, in this paper we study grid-based k-median clustering. We first develop an accuracy guarantee on the cost difference between grid-based solution and the optimum. Based on the theoretical analysis, we then propose a general and adaptive solution, which partitions stream data into cells of dynamically determined granularity and runs k-median clustering on the statistical information of cells with an accuracy guarantee. An extensive experiment over three real datasets clearly shows that our solution provides high-quality clustering outputs in an efficient way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.