Abstract
This article presents a gesture recognition/adaptation system for human--computer interaction applications that goes beyond activity classification and that, as a complement to gesture labeling, characterizes the movement execution. We describe a template-based recognition method that simultaneously aligns the input gesture to the templates using a Sequential Monte Carlo inference technique. Contrary to standard template-based methods based on dynamic programming, such as Dynamic Time Warping, the algorithm has an adaptation process that tracks gesture variation in real time. The method continuously updates, during execution of the gesture, the estimated parameters and recognition results, which offers key advantages for continuous human--machine interaction. The technique is evaluated in several different ways: Recognition and early recognition are evaluated on 2D onscreen pen gestures; adaptation is assessed on synthetic data; and both early recognition and adaptation are evaluated in a user study involving 3D free-space gestures. The method is robust to noise, and successfully adapts to parameter variation. Moreover, it performs recognition as well as or better than nonadapting offline template-based methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Interactive Intelligent Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.