Abstract

Provenance trials, where populations of different geographical origin are tested in a common environment (common garden test), are a tool suited to allow the study of intraspecific adaptive genetic variation. Research of pedunculate oak (Quercus robur L.) adaptive genetic variability through analyses of populations in common garden tests has a long tradition. However, pedunculated oak populations originating south-eastern from the Alps have been scarcely studied in this way. This study addresses the adaptive genetic variability and differentiation of pedunculate oak populations originating from Austria and Croatia in a provenance/progeny field trial. Studied plants were six years old and were growing at the trial for three years. After two years of unusually low precipitations height and survival were analysed. The total mean height of all plants in the trial was 137.8 cm and ranged from 123.0 cm to 151.8 cm. The overall mean survival rate was rather high (0.85). Mean population survival ranged from 0.64 to 0.94. Individual narrow-sense heritabilities (hi2), family mean heritabilities (hf2), the coefficients of additive genetic variation (CVA) and quantitative genetic differentiation coefficients (QST) were calculated. A multivariate regression tree (MRT) analysis was used to determine the pattern of genetic differentiation of the populations. Individual heritabilities for height ranged between 0.00 and 0.39. Family mean heritabilities for height were rather low in most populations as well (<0.5). Family mean heritabilities for survival were higher than for height (ranging between 0.00 and 0.77). Calculated QST coefficients (0.25 for height and 0.14 for survival) indicated between-population genetic differentiation. The populations were separated into two clusters by MRT analysis regarding a climatic variable, namely Hargreaves’ reference evapotranspiration. Populations originating from comparatively more humid habitats were grouped in the first cluster. The first cluster had a lower mean height and survival compared to the second one. The differences between these clusters were highly statistically significant. The observed quantitative genetic differentiation might have been driven by natural selection caused by differences in the relative moisture of the habitats from which the progeny populations originate. The results suggest ecotypic pattern of the quantitative genetic differentiation among studied populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call