Abstract

Genetic programming is one of the computer algorithms in the family of evolutionary-computational methods, which have been shown to provide reliable solutions to complex optimization problems. The genetic programming under discussion in this work relies on tree-like building blocks, and thus supports process modeling with varying structure. This paper, which describes an improved GP to facilitate the generation of steady-state nonlinear empirical models for process analysis and optimization, is an evolution of several works in the field. The key feature of the method is its ability to adjust the complexity of the required model to accurately predict the true process behavior. The improved GP code incorporates a novel fitness calculation, the optimal creation of new generations, and parameter allocation. The advantages of these modifications are tested against the more commonly used approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.