Abstract
In this paper, we construct an adaptive multiscale method for solving H(curl)-elliptic problems in highly heterogeneous media. Our method is based on the generalized multiscale finite element method. We will first construct a suitable snapshot space, and a dimensional reduction procedure to identify important modes of the solution. We next develop and analyze an a posteriori error indicator, and the corresponding adaptive algorithm. In addition, we will construct a coupled offline–online adaptive algorithm, which provides an adaptive strategy to the selection of offline and online basis functions. Our theory shows that the convergence is robust with respect to the heterogeneities and contrast of the media. We present several numerical results to illustrate the performance of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.