Abstract

The complex nonlinear systems appear in many important fields of physics and engineering, which are very useful for cryptography and secure communication. This paper investigates adaptive generalized function projective synchronization (AGFPS) between two different dimensional chaotic complex systems with fully or partially unknown parameters via both reduced order and increased order. Based on the Lyapunov stability theorem and adaptive control technique, a general adaptive controller with corresponding parameter update rule is constructed to achieve AGFPS between two nonidentical chaotic complex systems with distinct orders, and identify the unknown parameters simultaneously. This scheme is then applied to obtain AGFPS between the hyperchaotic complex Lu system and the chaotic complex Lorenz system with fully unknown parameters, and between the uncertain chaotic complex Chen system and the uncertain hyperchaotic complex Lorenz system, respectively. Corresponding simulations results are performed to show the feasibility and effectiveness of the proposed synchronization method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.