Abstract

Medical imaging plays an important role in modern healthcare, with Computed Tomography (CT) being essential for high-resolution cross-sectional imaging. However, Gaussian noise often occurs within the CT scan images and makes it difficult for image interpretation and reduces the diagnostic accuracy, creating a significant obstacle to fully utilizing CT scanning technology. Existing denoising techniques have a hard time balance between noise reduction and preserving the important image details, failing to enable the optimal diagnostic precision. This study introduces Adaptive Gaussian Wiener Filter (AGWF), a novel filter aims to denoise CT scan images that have been corrupted with various Gaussian noise variance without compromising the image details. The AGWF combines the Gaussian filter for initial noise reduction, followed by the implementation of Wiener filter, which can adaptively estimate noise variance and signal power in localized regions. This approach not only outperforms other existing techniques but also showcases a remarkable balance between noise reduction and image detail preservation. The experiment evaluates 300 images from the dataset and each image is corrupted with Gaussian noise variance to ensure a comprehensive evaluation of the AGWF’s performance. The evaluation indicated that AGWF can improve the Signal-to-Noise Ratio (SNR) value and reduce the Root Mean Square Error (RMSE) and Mean Square Error (MSE) value, showing a qualitative improvement in CT scan imagery. The proposed method holds promising potential for advancing medical imaging technology with the implementation of deep learning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call