Abstract

Standard alternating leg motions serve as the foundation for simple bipedal gaits, and the effectiveness of the fixed stimulus signal has been proved in recent studies. However, in order to address perturbations and imbalances, robots require more dynamic gaits. In this paper, we introduce dynamic stimulus signals together with a bipedal locomotion policy into reinforcement learning (RL). Through the learned stimulus frequency policy, we induce the bipedal robot to obtain both three-dimensional (3D) locomotion and an adaptive gait under disturbance without relying on an explicit and model-based gait in both the training stage and deployment. In addition, a set of specialized reward functions focusing on reliable frequency reflections is used in our framework to ensure correspondence between locomotion features and the dynamic stimulus. Moreover, we demonstrate efficient sim-to-real transfer, making a bipedal robot called BITeno achieve robust locomotion and disturbance resistance, even in extreme situations of foot sliding in the real world. In detail, under a sudden change in torso velocity of -1.2 m/s in 0.65 s, the recovery time is within 1.5-2.0 s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.