Abstract

The global navigation satellite system (GNSS) has been widely used in both military and civil fields. This study focuses on enhancing the carrier tracking ability of the phase-locked loop (PLL) in GNSS receivers for high-dynamic application. The PLL is a very popular and practical approach for tracking the GNSS carrier signal which propagates in the form of electromagnetic wave. However, a PLL with constant coefficient would be suboptimal. Adaptive loop noise bandwidth techniques proposed by previous researches can improve PLL tracking behavior to some extent. This paper presents a novel PLL with an adaptive loop gain control filter (AGCF-PLL) that can provide an alternative. The mathematical model based on second- and third-order PLL was derived. The error characteristics of the AGCF-PLL were also derived and analyzed under different signal conditions, which mainly refers to the different combinations of carrier phase dynamic and signal strength. Based on error characteristic curves, the optimal loop gain control method has been achieved to minimize tracking error. Finally, the completely adaptive loop gain control algorithm was designed. Comparable test results and analysis using the new method, conventional PLL, FLL-assisted PLL, and FAB-LL demonstrate that the AGCF-PLL has stronger adaptability to high target movement dynamic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.