Abstract

In this article, an adaptive fuzzy tracking control scheme is developed for a class of uncertain switched nonlinear systems with input saturations and full-state constraints. First to surmount the design difficulty with respect to a saturation nonlinearity controller, a nonlinear smooth function approximating the nondifferential saturation function is introduced to establish a standard switched adaptive tracking control strategy based on the mean-value theorem and the input compensation technique. Then, invoking fuzzy-logic systems (FLSs), a novel analysis method of average dwell time for switched nonlinear systems with full-state constraints is proposed by using an artful logarithmic inequality. Furthermore, the designed adaptive controller can ensure that all the states of uncertain switched nonlinear systems are not to violate the set constraint bounds by employing barrier Lyapunov functions (BLFs), and that the system output tracking error can converge to a desired neighborhood of the origin within a suitable compact set. Finally, the simulation results are given to demonstrate the validity of the presented approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.