Abstract

In this paper the synchronization problem for the uncertain fractional-order chaotic systems with unknown non-symmetrical control gain matrices is investigated by means of adaptive fuzzy control. Fuzzy logic systems are employed to approximate the unknown nonlinear functions. We decompose the control gain matrix into a positive definite matrix, a unity upper triangular matrix, and a diagonal matrix with diagonal entries +1 or -1. The positive matrix is used to construct the Lyapunov function; the diagonal matrix is employed to design the controller. Based on the fractional Lyapunov stability theorem, an adaptive fuzzy controller, which is accompanied by fractional adaptation laws, is established. The proposed methods can guarantee the boundedness of the involved signals as well as the asymptotical convergence of the synchronization errors. It should be pointed out that the methods for using quadratic Lyapunov function in the stability analysis of the fractional-order chaotic systems are developed in this paper. Based on the results of this paper, many control methods which are valid for integer-order nonlinear systems can be extended to control fractional-order nonlinear systems. Finally, the effectiveness of the proposed methods is shown by simulation studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.