Abstract

This paper develops a novel adaptive fuzzy sliding mode controller for the diving control of autonomous underwater vehicle (AUV). Unlike most previous AUVs’ control approaches, in this paper, the problem of input saturation constraint of rudder angle is considered, and the new auxiliary systems are proposed. Considering the modeling uncertainty of the dynamic model, an adaptive sliding mode controller based on fuzzy logic system is proposed, and the new update laws of control parameters are given. For the adaptive sliding mode controller design, although the input gain of each subsystem is partially known, only one fuzzy logic system is needed for online identification, which is a distinct difference from the previous adaptive sliding mode controllers. The uniformly ultimately boundedness of tracking error is proven by Lyapunov theorem. The effectiveness of the proposed control scheme is illustrated by simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.