Abstract

An Adaptive Fuzzy Sliding Mode Controller with Nonlinear Observer (AFSMCO) for the redundant robotic manipulator is proposed in this paper. This approach could achieve a precise trajectory tracking for a robot manipulator in the presence of uncertainties and disturbances. Primarily, a suitable observer using the recursive algorithm is presented for an accurate estimation of external disturbances caused by the varying external force. Secondly, the adaptive fuzzy logic is designed to approximate the parameters of the sliding mode controller (AFSMC) to avoid chattering in real time. Moreover, it is shown using the Lyapunov theory that the tracking error asymptotically converges to zero. Finally, the effectiveness of the proposed control approach and theoretical discussion are demonstrated by simulation results on a 7-link robot and tested on a 7-DOF manipulator platform.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call