Abstract

In this paper, a new adaptive fuzzy Proportional-Integral (of a modified error function)-Derivative (PIMD) controller is designed for systems with uncertain deadzones. Instead of using the summation of the system output error to be one of the input variables, the fuzzy mechanism in PIMD controller takes the summation of a proposed error function as one essential part of the output fuzzy singleton. Together, with the linearly combined error and difference of the error as the only input variables, the complexity reduced fuzzy mechanism of the fuzzy PIMD controller is constructed. The adaptation processes are provided to determine the parameters of the PIMD controller to reduce the overshoot and to accelerate the system with deadzone to the desired output. The fuzzy PIMD controller is indicated to be flexible to the variations of deadzone parameters. Also, the proposed fuzzy PIMD controller is flexible to the change of deadzone model to contain jump discontinuity points. Moreover, the fuzzy PIMD controller can perform well for the system with time-varying deadzone model. Simulation results are included to indicate the effectiveness of the adaptive fuzzy PIMD controller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call