Abstract

In this study, the dynamic responses of an adaptive fuzzy neural network (FNN) controlled toggle mechanism is described. The toggle mechanism is driven by a permanent magnet (PM) synchronous servo motor. First, based on the principle of computed torque, an adaptive controller is developed to control the position of a slider of the motor-toggle servomechanism. Since the selection of control gain of the adaptive controller has a significant effect on the system performance, an adaptive FNN controller is proposed to control the motor-toggle servomechanism. In the proposed adaptive FNN controller, an FNN is adopted to facilitate the adjustment of control gain on line. Moreover, simulated and experimental results due to a periodic sinusoidal command show that the dynamic behaviors of the proposed adaptive and adaptive FNN controllers are robust with regard to uncertainties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.