Abstract

In this paper, a stability analysis is suggested for adaptive fuzzy logic systems (FLSs) without the requirement of states measurement or estimation. Fuzzy logic is viewed as a powerful tool in providing accurate approximation of systems with uncertainties. The proposed methodology exploits the power of adaptive control theory to find a Lyapunov-based adaptation law for FLSs. As such, both stability and tracking problems are addressed for a class of nonlinear dynamic systems. The proposed method yields reduced complexity with respect to many adaptive FLSs available in the literature. In addition, the use of an observer to estimate immeasurable states is not required as in other methods. First, a stability analysis is presented for adaptive control. Then, results are extended to adaptive FLSs with unknown dynamics. A numeric illustrative example highlights the implementation details and the performance of the suggested scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.