Abstract

The adaptive fuzzy identification and control problems are considered for a class of multi-input multi-output nonlinear systems with unknown functions and unknown dead-zone inputs. The main characteristics of the considered systems are that 1) they are composed of n subsystems and each subsystem is in nested lower triangular form, 2) dead-zone inputs are in nonsymmetric nonlinear form, and 3) dead-zone inputs appear nonlinearly in the systems and their parameters are not required to be known. The controller design for this class of systems is a difficult and complicated task because of the existences of unknown functions, the couplings among the nested subsystems, and the dead-zone inputs. In the controller design, the fuzzy logic systems are employed to approximate the unknown functions and the differential mean value theorem is used to separate dead-zone inputs. To compensate for dead-zone inputs, the compensative terms are designed in the controllers. The stability of the closed-loop system is proved via the Lyapunov stability theorem. A simulation example is provided to validate the feasibility of the approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call